China manufacturer High Quality Oxygen Bottle 2L 40L Oxygen Cylinder for Medical supplier

Product Description

Our Seamless Steel Oxygen Cylinders are mainly produced conformity with Standard GB5099-94, ISO9809-1/3 and EN1964. The raw material is either Seamless Steel Pipe or Steel Billet.
 
Our Seamless Steel Oxygen Cylinders can be widely used in many fields, such as industry, medical equipment, fire protection and scientific research, for storage and transport of permanent gases and high pressure liquefied gases, such as Oxygen Gas, Carbon Dioxide Gas, Argon Gas, Nitrogen Gas, Helium Gas, Carbon Monoxide Gas, SF6 Gas, N2O gas, Air, etc.
 
Our Oxygen Cylinder is widely applied in chemical, metallurgical, mechanical, medical, scientific research and building industry.
  
What we can promise for you:
1. High quality and security gas cylinders
2. Best price in the market
3. Fast delivery (3~4 weeks)

 

Type Diameter (mm) Capacity (L) Height (mm) Weight (kg) Working pressure(Mpa) Design wall thickness(mm) Material
WMA108-1.4-15 108 1.4 240 2.8 15 2.9
(GB5099)
3.2
(ISO9809-
3)
37Mn
WMA108-2-15 2 310 3.5
WMA108-3-15 3 437 4.8
WMA121-2.8-15 121 2.8 350 4.6 15 3.5 37Mn
WMA121-3-15 3 375 4.9
WMT121-4-15 4 477 5.8
WMA140-4-15 140 4 372 5.77 15 4.1 37Mn
WMA140-5-15 5 458 7.52
WMA140-8-15 8 671 10.72
WMA152-7-15 152 7 528 9.57 15 4.4 37Mn
WMA152-8-15 8 600 10.66
WMA152-10-15 10 726 12.6
WMA152-15-15 15 1012 17.7
WMA159-4-15 159 4 320 6.8 15 4.4(GB5099) 4.7(ISO 9809-3) 37Mn
WMA159-8-15 8 554 10.8
WMA159-10-15 10 665 12.7
WMA159-15-15 15 945 17.5
WMA180-8-15 180 8 475 13.9 15 5.3 37Mn
WMA180-10-15 10 565 16.2
WMA180-12-15 12 655 18.4
WMA180-15-15 15 785 21.7
WMA180-20-15 20 1571 27.3
WMA219-20-15 219 20 710 27.8 15 5.7(GB5099)   6.1( ISO 9809-3) 37Mn
WMA219-40-15 40 1325 48.5
WMA219-45-15 45 1455 50.8
WMA219-50-15 50 1605 55.6
WZA232-40-15 232 40 1160 44.2 15 5.3 37Mn
WZA232-47-15 47 1350 50.3
WZA232-50-15 50 1430 53
WZA267-40-15 267 40 930 45.5 15 5.8 37Mn
WZA267-50-15 50 1127 53.9
WZA267-70-15 70 1521 70.7
WGA232-30-20 232 30 916 37.4 20 5.2 34CrMo4
WGA232-38-20 38 1127 44.8
WGA232-40-20 40 1180 46.7
WGA232-46.7-20 46.7 1358 52.9
WGA232-47-20 47 1366 53.2
WGA232-50-20 50 1445 56
WGA232-60-20 60 1710 65.2

Advantages of our gas cylinders:

HIGH QUALITY
We have implemented strict and complete quality control system, which ensures  each gas cylinder can meet quality requirements. All gas  cylinders must be strictly inspected before shipment.

COMPETITVE PRICE
As a big gas cylinder factory, our output is over 4000 PCS per day, that will effectively reduce labor cost and other cost of gas cylinders like valve and raw materials.  That's why we could always offer you best price !
 

GOOD AND PROFESSIONAL SERVICE
We have worked in this field for over 10 years, all of our egineers and sales could supply best suggestions and answers for your queations, no matter gas cylinders or the gas filling process in fillowing. 
Since now, we could supply you:
1. Gas filling service: N2O, Argon, CO2, Helium, Oxygen, Nitrogen, ect.
2. Used Gas cylinder insepection service too keep safe
3. Related gas equipment supply
When you chose RUIMING, you chose a trustworthy partner!

FAST DELIVERY TIME
Normal delivery time for 40L gas cylinder: 15 days
50L 200 BAR gas cylinders: 25-30 days
If you need gas filling , it will take more 10 days.

OEM ACCEPTED
OEM is accepted in our company, no matter COLOR, VALVE, CAP/HANDLE, and marks. All these could be fully filled.

 

Function: Storage Pressure Vessel, Heat Pressure Vessel, Reaction Pressure Vessel
Application: Gas
Material: Stainless Steel
Pressure: 10.0MPa≤p<100.0MPa
Storage Medium: Flammable/Toxic
Pressure Level: High Pressure (10.0MPa≤p<100.0MPa)
Samples:
US$ 80/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

How do hydraulic cylinders compare to other methods of force generation like electric motors?

Hydraulic cylinders and electric motors are two different methods of force generation with distinct characteristics and applications. While both hydraulic cylinders and electric motors can generate force, they differ in terms of their working principles, performance attributes, and suitability for specific applications. Here's a detailed comparison of hydraulic cylinders and electric motors:

1. Working Principle:

- Hydraulic Cylinders: Hydraulic cylinders generate force through the conversion of fluid pressure into linear motion. They consist of a cylinder barrel, piston, piston rod, and hydraulic fluid. When pressurized hydraulic fluid enters the cylinder, it pushes against the piston, causing the piston rod to extend or retract, thereby generating linear force.

- Electric Motors: Electric motors generate force through the conversion of electrical energy into rotational motion. They consist of a stator, rotor, and electromagnetic field. When an electrical current is applied to the motor's windings, it creates a magnetic field that interacts with the rotor, causing it to rotate and generate torque.

2. Force and Power:

- Hydraulic Cylinders: Hydraulic cylinders are known for their high force capabilities. They can generate substantial linear forces, making them suitable for heavy-duty applications that require lifting, pushing, or pulling large loads. Hydraulic systems can provide high force output even at low speeds, allowing for precise control over force application. However, hydraulic systems typically operate at lower speeds compared to electric motors.

- Electric Motors: Electric motors excel in providing high rotational speeds and are commonly used for applications that require rapid motion. While electric motors can generate significant torque, they tend to have lower force output compared to hydraulic cylinders. Electric motors are suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.

3. Control and Precision:

- Hydraulic Cylinders: Hydraulic systems offer excellent control over force, speed, and positioning. By regulating the flow of hydraulic fluid, the force and speed of hydraulic cylinders can be precisely controlled. Hydraulic systems can provide gradual acceleration and deceleration, allowing for smooth and precise movements. This level of control makes hydraulic cylinders well-suited for applications that require precise positioning, such as in industrial automation or construction equipment.

- Electric Motors: Electric motors also offer precise control over speed and positioning. Through motor control techniques such as varying voltage, frequency, or pulse width modulation (PWM), the rotational speed and position of electric motors can be accurately controlled. Electric motors are commonly used in applications that require precise speed control, such as robotics, CNC machines, or servo systems.

4. Efficiency and Energy Consumption:

- Hydraulic Cylinders: Hydraulic systems can be highly efficient, especially when properly sized and designed. However, hydraulic systems typically have higher energy losses due to factors such as fluid leakage, friction, and heat generation. The overall efficiency of a hydraulic system depends on the design, component selection, and maintenance practices. Hydraulic systems require a hydraulic power unit to pressurize the hydraulic fluid, which consumes additional energy.

- Electric Motors: Electric motors can have high efficiency, especially when operated at their optimal operating conditions. Electric motors have lower energy losses compared to hydraulic systems, primarily due to the absence of fluid leakage and lower friction losses. The overall efficiency of an electric motor depends on factors such as motor design, load conditions, and control techniques. Electric motors require an electrical power source, and their energy consumption depends on the motor's power rating and the duration of operation.

5. Environmental Considerations:

- Hydraulic Cylinders: Hydraulic systems typically use hydraulic fluids that can pose environmental concerns if they leak or are not properly disposed of. The choice of hydraulic fluid can impact factors such as biodegradability, toxicity, and potential environmental hazards. Proper maintenance and leak prevention practices are essential to minimize the environmental impact of hydraulic systems.

- Electric Motors: Electric motors are generally considered more environmentally friendly since they do not require hydraulic fluids. However, the environmental impact of electric motors depends on the source of electricity used to power them. When powered by renewable energy sources, such as solar or wind, electric motors can offer a greener solution compared to hydraulic systems.

6. Application Suitability:

- Hydraulic Cylinders: Hydraulic cylinders are commonly used in applications that require high force output, precise control, and durability. They are widely employed in industries such as construction, manufacturing, mining, and aerospace. Hydraulic systems are well-suited for heavy-duty applications, such as lifting heavy objects, operating heavy machinery, or controlling large-scale movements.

- Electric Motors: Electric motors are widely used in various industries and applications that require rotational motion, speed control, and precise positioning. They are commonly found in appliances, transportation, robotics, HVAC systems, and automation. Electric motorsare suitable for applications that involve continuous rotary motion, such as driving conveyor belts, rotating machinery, or powering vehicles.In summary, hydraulic cylinders and electric motors have different working principles, force capabilities, control characteristics, efficiency levels, and application suitability. Hydraulic cylinders excel in providing high force output, precise control, and durability, making them ideal for heavy-duty applications. Electric motors, on the other hand, offer high rotational speeds, precise speed control, and are commonly used for applications that involve continuous rotary motion. The choice between hydraulic cylinders and electric motors depends on the specific requirements of the application, including the type of motion, force output, control precision, and environmental considerations.

hydraulic cylinder

What considerations are important when selecting hydraulic cylinders for mobile equipment?

To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:

  1. Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
  2. Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
  3. Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
  4. Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
  5. Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
  6. Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder's movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
  7. Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
  8. Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
  9. Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.

hydraulic cylinder

What is a hydraulic cylinder and how does it function in various applications?

A hydraulic cylinder is a mechanical actuator that converts hydraulic energy into linear force and motion. It plays a critical role in various applications where controlled and powerful linear motion is required. Hydraulic cylinders are commonly used in industries such as construction, manufacturing, agriculture, and transportation. Here's a detailed explanation of what a hydraulic cylinder is and how it functions:

Definition and Components:

- A hydraulic cylinder consists of a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder.

Function:

- The function of a hydraulic cylinder is to convert the pressure and flow of hydraulic fluid into linear force and motion. The hydraulic fluid, typically oil, is pressurized and directed into one of the chambers of the cylinder. As the fluid enters the chamber, it applies pressure on the piston, causing it to move in a linear direction. This linear motion of the piston is transferred to the piston rod, creating a pushing or pulling force.

Working Principle:

- The working principle of a hydraulic cylinder is based on Pascal's law, which states that pressure exerted on a fluid in a confined space is transmitted equally in all directions. In a hydraulic cylinder, when hydraulic fluid is pumped into one side of the cylinder, it creates pressure on the piston. The pressure is transmitted through the fluid to the other side of the piston, resulting in a balanced force across the piston and piston rod. This force generates linear motion in the direction determined by the fluid input.

Applications:

- Hydraulic cylinders find extensive use in a wide range of applications due to their ability to generate high forces and precise control of linear motion. Some common applications include:

1. Construction Equipment: Hydraulic cylinders are used in excavators, loaders, bulldozers, and cranes for lifting, pushing, and digging tasks.

2. Manufacturing Machinery: Hydraulic cylinders are employed in presses, machine tools, and material handling equipment for pressing, clamping, and lifting operations.

3. Agricultural Machinery: Hydraulic cylinders are used in tractors, harvesters, and irrigation systems for tasks like steering, lifting, and controlling attachments.

4. Transportation: Hydraulic cylinders are utilized in vehicles such as dump trucks, garbage trucks, and forklifts for tilting, lifting, and tipping operations.

5. Aerospace and Defense: Hydraulic cylinders are employed in aircraft landing gear, missile systems, and hydraulic actuators for control surfaces.

6. Marine and Offshore: Hydraulic cylinders are used in ship steering systems, cranes, and offshore drilling equipment for various lifting and positioning tasks.

In these applications, hydraulic cylinders offer advantages such as high force capability, precise control, compact size, and durability. They provide efficient and reliable linear motion, contributing to enhanced productivity and functionality in a wide range of industries.

Overall, hydraulic cylinders are integral components in various applications where controlled and powerful linear motion is required. Their ability to convert hydraulic energy into mechanical force makes them invaluable in numerous industries, enabling the operation of heavy machinery, precise positioning, and efficient load handling.

China manufacturer High Quality Oxygen Bottle 2L 40L Oxygen Cylinder for Medical   supplier China manufacturer High Quality Oxygen Bottle 2L 40L Oxygen Cylinder for Medical   supplier
editor by CX 2023-10-21