China Best Sales China Famous Hydraulic Cylinder Front End Model with CE for Tipper Dumper Truck vacuum pump ac system

Product Description

Product description:
Junfu is famous brand in front-end cylinders, offering an extensive catalogue from 5 to 100 tons with bespoke solutions. Designed for rear-end tippers and tippers trailers, CHINAMFG brand front-end telescopic cylinders are known for their durability, reliability in all conditions and value for money. We believe in delivering a solution that can rapidly and successfully meet your requirements in demanding industries such as transportation, construction and mining. With high payload and longer service intervals for increased operating time, CHINAMFG brand front-end cylinders are also environmentally friendly solutions with lower oil & fuel consumption.

FC telescopic front-end(front mounting) cylinders are primarily designed for straight headboard dump trucks with a capacity range of over 100 tons tipping weight. Our trunnion type FC cylinder is lightweight, strong, maintenance free and offers the most added stability to the tipper. The CHINAMFG brand FC tipping cylinders have earned reputation for their reliability and value for money over many years.

Designed for Dump Truck applications, FC series cylinder with 3-7 stages is capable of lifting more weight which in return allows trucks to be equipped with smaller cylinders reducing space and saving weight. This CHINAMFG series cylinder is mostly used in combination with a Straight Headboard Type and Trunnion Type Body Connection.

The hydraulic system including hydraulic oil tank, gear pump, lift valve, air control valve and limit valve, oil pipe and joints.

Product Details

series  model

L1

L2

L3

L4

L5

L6

ΦA

Pipe joint

Applicable cargo box length(mm)

Overhang length(mm)

Lifting angle

Lifting weight(Kg)

Fuel tank selection
recommend(L)

1

3

7

3TG-F137*3830

200

65

360

60

325

1585

Φ60

G1

4700-5300

800

47-52°

43

80

4TG-F137*3830

200

65

360

60

325

1270

Φ60

G1

4700-5300

800

47-52°

31

80

4TG-F137*4280

200

65

360

60

325

1390

Φ60

G1

5300-6000

800

47-52°

36

80

4TG-F137*4800

200

65

360

60

325

1510

Φ60

G1

5800-6500

800

47-52°

36

80

1

5

7

4TG-F157*4280

245

65

360

60

325

1385

Φ60

G1

5300-5800

800

47-52°

53

80

4TG-F157*4800

245

65

360

60

325

1505

Φ60

G1

5800-6500

800

47-52°

53

100

4TG-F157*5100

245

65

360

60

325

1580

Φ60

G1

6200-6800

800

47-52°

58

100

4TG-F157*5390

245

65

360

60

325

1655

Φ60

G1

6600-7200

800

47-52°

58

100

5TG-F157*4050

245

65

360

60

325

1125

Φ60

G1

5000-5500

800

47-52°

46

80

5TG-F157*4280

245

65

360

60

325

1165

Φ60

G1

5300-6000

800

47-52°

46

80

5TG-F157*4800

245

65

360

60

325

1265

Φ60

G1

5800-6500

800

47-52°

49

80

5TG-F157*5100

245

65

360

60

325

1340

Φ60

G1

6200-6800

800

47-52°

49

80

5TG-F157*5390

245

65

360

60

325

1385

Φ60

G1

6600-7200

800

47-52°

49

80

1

7

9

4TG-F179*4600

245

65

360

65

325

1455

Φ60

G1

5600-6300

800

47-52°

66

120

4TG-F179*4800

245

65

360

65

325

1505

Φ60

G1

5800-6500

800

47-52°

66

120

4TG-F179*5100

245

65

360

65

325

1580

Φ60

G1

6200-6800

800

47-52°

70

120

4TG-F179*5390

245

65

360

65

325

1655

Φ60

G1

6600-7200

800

47-52°

70

120

4TG-F179*5780

245

65

360

65

325

1750

Φ60

G1

7200-8000

1000

47-52°

70

135

6TG-F179*5780

245

65

360

65

325

1270

Φ60

G1

7200-8000

1000

47-52°

49

120

2

0

2

4TG-F202*5390

280

65

360

65

325

1675

Φ65

G1

6600-7200

800

47-52°

92

165

4TG-F202*5780

280

65

360

65

325

1770

Φ65

G1

7200-8000

1000

47-52°

96

165

4TG-F202*6180

280

65

360

65

325

1870

Φ65

G1

8000-8500

1000

47-52°

96

185

5TG-F202*7200

280

65

360

65

325

1770

Φ65

G1

8700-9500

1000

47-52°

88

185

 Note: The above product models are our company's regular product models. Customers are requested to choose regular products as much as possible, which can improve the delivery time and service quality. 

Workshop with advanced equipment:

Exhibition:

Certificates: ISO9001, IATF 16949:2016, CE,etc.

FAQ:
Q1: How about your cylinders compared with HYVA cylinder ?
      Our cylinders can replace HYVA cylinder well, with same technical details and mounting sizes

Q2: What's your cylinder's advantages ?
      The cylinders are manufactured by advanced equipments and made under strictly quality control processing.
      The steel is quenched and tempered 27SiMn steel and all raw materials are good quality from world famous companies.
      Competitive price!

Q3: When your company be established ?
      Our company be established in 2002, professional manufacturer of hydraulic cylinders more than 20 years.
      We had passed IATF 16949:2016 Quality control system, ISO9001, CE,etc.

Q4: How about the delivery time ?
       7-15 days approximately.

Q5: How about the cylinder's quality gurantee ?
      One year.

 

Certification: CE, ISO9001, IATF 16949:2016, SGS
Pressure: High Pressure
Work Temperature: Normal Temperature
Acting Way: Single Acting
Working Method: Straight Trip
Adjusted Form: Switching Type
Customization:
Available

|

hydraulic cylinder

Can hydraulic cylinders be integrated with modern telematics and remote monitoring?

Yes, hydraulic cylinders can indeed be integrated with modern telematics and remote monitoring systems. The integration of hydraulic cylinders with telematics and remote monitoring technology offers numerous benefits, including enhanced operational efficiency, improved maintenance practices, and increased overall productivity. Here's a detailed explanation of how hydraulic cylinders can be integrated with modern telematics and remote monitoring:

1. Sensor Integration:

- Hydraulic cylinders can be equipped with various sensors to gather real-time data about their performance and operating conditions. Sensors such as pressure transducers, temperature sensors, position sensors, and load sensors can be integrated directly into the cylinder or its associated components. These sensors provide valuable information about parameters such as pressure, temperature, position, and load, enabling remote monitoring and analysis of the cylinder's behavior.

2. Data Transmission:

- The data collected from the sensors in hydraulic cylinders can be transmitted wirelessly or through wired connections to a central monitoring system. Wireless communication technologies such as Bluetooth, Wi-Fi, or cellular networks can be employed to transmit data in real-time. Alternatively, wired connections such as Ethernet or CAN bus can be utilized for data transmission. The choice of communication method depends on the specific requirements of the application and the available infrastructure.

3. Remote Monitoring Systems:

- Remote monitoring systems receive and process the data transmitted from hydraulic cylinders. These systems can be cloud-based or hosted on local servers, depending on the implementation. Remote monitoring systems collect and analyze the data to provide insights into the cylinder's performance, health, and usage patterns. Operators and maintenance personnel can access the monitoring system through web-based interfaces or dedicated software applications to view real-time data, receive alerts, and generate reports.

4. Condition Monitoring and Predictive Maintenance:

- Integration with telematics and remote monitoring enables condition monitoring and predictive maintenance of hydraulic cylinders. By analyzing the collected data, patterns and trends can be identified, allowing for the detection of potential issues or anomalies before they escalate into major problems. Predictive maintenance algorithms can be applied to the data to generate maintenance schedules, recommend component replacements, and optimize maintenance activities. This proactive approach helps prevent unexpected downtime, reduces maintenance costs, and maximizes the lifespan of hydraulic cylinders.

5. Performance Optimization:

- The data collected from hydraulic cylinders can also be utilized to optimize their performance. By analyzing parameters such as pressure, temperature, and load, operators can identify opportunities for improving operational efficiency. Insights gained from the remote monitoring system can guide adjustments in system settings, load management, or operational practices to optimize the performance of hydraulic cylinders and the overall hydraulic system. This optimization can result in energy savings, improved productivity, and reduced wear and tear.

6. Integration with Equipment Management Systems:

- Telematics and remote monitoring systems can be integrated with broader equipment management systems. This integration allows hydraulic cylinder data to be correlated with data from other components or related machinery, providing a comprehensive view of the overall system's performance. This holistic approach enables operators to identify potential interdependencies, optimize system-wide performance, and make informed decisions regarding maintenance, repairs, or upgrades.

7. Enhanced Safety and Fault Diagnosis:

- Telematics and remote monitoring can contribute to enhanced safety and fault diagnosis in hydraulic systems. Real-time data from hydraulic cylinders can be used to detect abnormal conditions, such as excessive pressure or temperature, which may indicate potential safety risks. Fault diagnosis algorithms can analyze the data to identify specific issues or malfunctions, enabling prompt intervention and reducing the risk of catastrophic failures or accidents.

In summary, hydraulic cylinders can be effectively integrated with modern telematics and remote monitoring systems. This integration enables the collection of real-time data, remote monitoring of performance, condition monitoring, predictive maintenance, performance optimization, integration with equipment management systems, and enhanced safety. By harnessing the power of telematics and remote monitoring, hydraulic cylinder users can achieve improved efficiency, reduced downtime, optimized maintenance practices, and enhanced overall productivity in various applications and industries.

hydraulic cylinder

Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance

Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let's explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:

  1. Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
  2. Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
  3. Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
  4. Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
  5. Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.

In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.

hydraulic cylinder

How do hydraulic cylinders accommodate variations in stroke length and force requirements?

Hydraulic cylinders are designed to accommodate variations in stroke length and force requirements, providing flexibility and adaptability for different applications. They can be tailored to meet specific needs by considering factors such as piston diameter, rod diameter, hydraulic pressure, and cylinder design. Here's a detailed explanation of how hydraulic cylinders accommodate variations in stroke length and force requirements:

1. Cylinder Size and Design:

- Hydraulic cylinders come in various sizes and designs to accommodate different stroke lengths and force requirements. The cylinder's diameter, piston area, and rod diameter are key factors that determine the force output. Larger cylinder diameters and piston areas can generate greater force, while smaller diameters are suitable for applications requiring lower force. By selecting the appropriate cylinder size and design, stroke lengths and force requirements can be effectively accommodated.

2. Piston and Rod Configurations:

- Hydraulic cylinders can be designed with different piston and rod configurations to accommodate variations in stroke length. Single-acting cylinders have a single piston and can provide a stroke in one direction. Double-acting cylinders have a piston on both sides, allowing for strokes in both directions. Telescopic cylinders consist of multiple stages that can extend and retract, providing a longer stroke length compared to standard cylinders. By selecting the appropriate piston and rod configuration, the desired stroke length can be achieved.

3. Hydraulic Pressure and Flow:

- The hydraulic pressure and flow rate supplied to the cylinder play a crucial role in accommodating variations in force requirements. Increasing the hydraulic pressure increases the force output of the cylinder, enabling it to handle higher force requirements. By adjusting the pressure and flow rate through hydraulic valves and pumps, the force output can be controlled and matched to the specific requirements of the application.

4. Customization and Tailoring:

- Hydraulic cylinders can be customized and tailored to meet specific stroke length and force requirements. Manufacturers offer a wide range of cylinder sizes, stroke lengths, and force capacities to choose from. Additionally, custom-designed cylinders can be manufactured to suit unique applications with specific stroke length and force demands. By working closely with hydraulic cylinder manufacturers, it is possible to obtain cylinders that precisely match the required stroke length and force requirements.

5. Multiple Cylinders and Synchronization:

- In applications that require high force or longer stroke lengths, multiple hydraulic cylinders can be used in combination. By synchronizing the movement of multiple cylinders through the hydraulic system, the stroke length and force output can be effectively increased. Synchronization can be achieved using mechanical linkages, electronic controls, or hydraulic circuitry, ensuring coordinated movement and force distribution across the cylinders.

6. Load-Sensing and Pressure Control:

- Hydraulic systems can incorporate load-sensing and pressure control mechanisms to accommodate variations in force requirements. Load-sensing systems monitor the load demand and adjust the hydraulic pressure accordingly, ensuring that the cylinder delivers the required force without exerting excessive force. Pressure control valves regulate the pressure within the hydraulic system, allowing for precise control and adjustment of the force output based on the application's needs.

7. Safety Considerations:

- When accommodating variations in stroke length and force requirements, it is essential to consider safety factors. Hydraulic cylinders should be selected and designed with an appropriate safety margin to handle unexpected loads or variations in operating conditions. Safety mechanisms such as overload protection valves and pressure relief valves can be incorporated to prevent damage or failure in situations where the force limits are exceeded.

By considering factors such as cylinder size and design, piston and rod configurations, hydraulic pressure and flow, customization options, synchronization, load-sensing, pressure control, and safety considerations, hydraulic cylinders can effectively accommodate variations in stroke length and force requirements. This flexibility allows hydraulic cylinders to be tailored to meet the specific demands of a wide range of applications, ensuring optimal performance and efficiency.

China Best Sales China Famous Hydraulic Cylinder Front End Model with CE for Tipper Dumper Truck   vacuum pump ac system	China Best Sales China Famous Hydraulic Cylinder Front End Model with CE for Tipper Dumper Truck   vacuum pump ac system
editor by CX 2023-11-20